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ON THE STABILITY OF STATIONARY MOTIONS 
OF NON-CONSERVATIVE MECHANICAL SYSTEMS* 

A.V. KARAPETYAN and V.N. RUBANOVSKII 

The problem of the stability of stationary motions (SM) of mechanical 
systems admitting of first integrals and a function that does not grow 
along the motions is considered. Theorems are proposed on the stability 
and asymptotic stability in parts of the variables, as well as on the 
instability of the SM of such systems. The general situations are 
illustrated with an example of the motion of a heavy inhomogeneous sphere 
over a plane with friction. 

1. We consider a scleronomic mechanical system that admits of time-independent first 
integrals U1 (z) = cl, . . . . U, (x) = Q, and a time-independent function uo (s) that does not grow 
along the system motions. 

We assume that the functions U,(z), LJ1(z),.. ., U, (2) are continuously differentiable 
with respect to the variables m = (a,...,~) therein. All or certain generalized coordinates 
and velocities or momenta of the system, quasicoordinates, certain functions of these quantities 
etc., can be these variables. 

Theorem 1. If a function U,(x) that does not grow along the system motions has a strict 
local minimum for constant values of the integrals U,(z) = c,(i = 1, . . ..k) of this system, 
then the valuesofthe variables making this function a minimum correspond to the stable real 
motion of the system (this motion is usually called stationary). 

Theorem 2. If the stationary motion (SM) makes the function V,(z) a strict local 
minimum and is isolated for constant values of the integrals ut (z) = cl(i = 1, . . .,k) of the 
motions along which the function U,(z) remains constant, then every perturbed motion that 
is sufficiently close to the unperturbed motion will tend asmyptotically as t+oo to one of 
the system SM, the corresponding strict local minimum of the function V,(r) for perturbed 
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values of the constant integrals u,(z)= ci(i = I,..., k); in particular, the unperturbed motion 
is asymptotically stable for unperturbed values of the constant integrals used. 

Theorem 3. If the St4 does not make the function u,(x) even a non-strict minimum and is 
isolated for constant values of the integrals U,(x)= e,(i = I,..., k) of the motion along 
which the function U,(x) remains constant, then the unperturbed motion is unstable. 

The theorems presented are a modification and further development of Routh's theorems 
/l-9/. Theorem 1 can be proved by an almost literal duplication of the Routh theorem given 
by Salvadori and Pozharitskii /5, 6/, and Theorems 2 and 3 by an almost literal duplication 
of the proofs of the Barbashin-Krasovskii theorem on asymptotic stability /lo/ and the 
Krasovskii theorem on instability /ll/, respectively. We note that Theorems 2 and 3 are 
analogues of the Rumyantsev Theorems VI and VII (/12/, pp.184-185). 

It should be borne in mind that Theorems 1 and 2 assert the stability of the SM with 
respect to not all phase variables of the system under consideration, in general, but only 
with respect to those (or to their combinations) whose change increases the value of the 
function U,(x) for constant values of the integrals U,(z) = ci(i = I,..., k), i.e., with respect 
to part ofthevariables /12/. 

We note that the assertion of Theorem 2 is analogous to some extent to the assertion of 
the Lyapunov-Malkin theorem /13/ on stability in the singular case of the critical case of 
several zero roots; however, unlike the latter, the application of Theorem 2 doesnotinvolve 
the compilation of a characteristic equation of the perturbed equations of motion and an 
analysis of its roots. 

Theorems 2 and 3 are evidently applicable to a study of SM stability of not only scleronomic 
mechanical systems but also systems periodically dependent on time, while Theorem 1 is 
applicable for arbitrary rheonomic systems. 

2. The equations of motion of a heavy inhomogeneous dynamically symmetric sphere along a 
horizontal plane with sliding friction (irrespective of the hypothesis about the nature of 
the friction) admit of /14, 15/ a function that does not grow along all motions of the sphere 

UO = m (ha + aa + ha) $- JI (3P + 0~3) + J8Q + amguy, Q 2h = const (2.1) 
and two integrals 

U, = Jl(%yl + a,?,) + J,o, (vs + a/p) = k = const (2.2) 

u, = YIP + Ya2 + ys= = 1 (2.3) 

Here m is the mass of the sphere J1 and J, are the equatorial and axial central moments 
of inertia, respectively, g is the acceleration due to gravity , --n is the coordinate of the 
geometric centre of the sphere on its dynamical axis of symmetry, measured from the centre of 
mass of the sphere (the positive direction of the axis is selected in such a way that a> 0), 

P is the radius of the sphere and vt, 02 and yt(i=1,2,3) are the respective components 
of the velocity vectors of the centre of mass of the sphere, its angular velocity, and the 
unit vector of the vertical in the principal central axes of inertia of the sphere. 

According to Routh's theorem, critical points of the function (2.1) correspond to the CM 
of the sphere for constant values of the integrals (2.2) and (2.3), and we can reduce the 
problem of determining them to the problem of determining the critical points of the function 

v = Uo - 2h (U, - k) + p (U, - 1) (2.4) 

where x and p are undetermined Lagrange multipliers. The function V takes stationary values 
if the variables vi, ai, yt (i = 1, 2, 3),, I and p satisfythesystemofequations (2.2), (2.3) and (2.4) 

vr = v2 = v* = 0, 01 = hy,, 02 = ay,, ma = h (~8 + alp) 
S,awp + mga = 0. 

(p - J&Y y1 = (P - Jla”) ?a = 0, (p - J,a’) ys - 
This system has three groups of solutions (the relationships v1 = vr = VI = 0 common for 

all these groups are omitted) 

01 = 02 = yr = yz = 0, as = a (I + dp), yJ = I (2.5) 

(P = w (I + a/p) - mga) 

a1 = oa = y1 = Ya = 0, o11 = a (4 + dp), y8 = 4 
(p = Jaa* (1 - U/P) + mga) 

a1 = ay,, a2 = a?,, as = a (t5 + U/P), era + ~~2 = I - ~,a 
mga - J,lia (y, + a/p) + Jlh2y, = 0 (p = J,h*) 

CW 

(2.7). 

The parameter h is related to the constant k of the integral (2.2) by the respective 
relationships 

k = J,h (1 + a/p)' (2.57 

k = J& (-1 + a/p)’ (2X) 
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(2.7’) 

(it is assumed that J1#J8). 
Permanent rotations of the sphere around the vertically placed dynamical axis of symmetry 

correspond tothe solutions (2.5) ((2.6)) when the centre of mass is above (below) its geometric 
centre; in particular for .h =0 the equilibrium positons of the sphere correspond to the 
solutions of (2.5) and (2.6). 

Regular precessions correspond to the solutions (2.7): the sphere rotates with angular 
velocity ha/p around the dynamical axis of symmetry precessing with angular velocity X 
around the vertical passing through the centre of mass of the sphere and making a constant 
angle with the axis of symmetry, whose cosine equals 

The centre of mass of the sphere is fixed for all motions (2.5)-(2.7); the point of 
tangency of the sphere with the plane is fixed for the motions (2.5) and (2.6) anddescribes 
a circle on both the reference plane and on the surface of the sphere when the sphere performs 
pure roll, in the motions (2.7). 

Regular precessions of the sphere obviously do not exist for all values of the parameter 
h but only for those for which 1 y81< 1 follows from (2.8). 

Finally, we note that taking (2.5)-(2.7) into account follows from (2.5')-(2.71) that 
for each value of k there exists not more than four SM of the sphere of the form (2.5)-(2.7): 
two permanent rotations ("upper" and "lower") and not more than two regular precessions (it 
follows from (2.7') that not more than two different real values of X can correspond to one 
value of k). All (four in the general case) SM of the sphere are isolated for fixed values of 
k from each other for ys determinable from (2.8) and not equal to&l, i.e., for 

3. When the condition /14, 15/ 

aV$ > 1 (3.1) 
is satisfied the SM (2.5) makes the function (2.1) a strict minimum for constant values of 
the integrals (2.2) and (2.3) and therefore stable according to Theorem 1 with respect to 
the variables uir ot,vr (i = 1,2,3). Under the condition 

hV?$ < 1 (3.2) 
the SM (2.5) does not make the function UO even a non-strict minimum. 

Analogously, when the condition 

h%f < 1 (3.3) 
is satisfied the SM (2.6) makes the function (2.1) a strict minimum and therefore stable, 
while when 

?&a > 1 (3.4) 
it does not make the function U, even a non-strict minimum. 

Finally, when 
JI > Js (3.5) 

the SM (2.7) makes the function (2.1) a strict minimum for constant values of the integrals 
(2.2) and (2.3), and therefore, stable according to Theorem 1 with respect to the variables 
v1 (i = 1, 2, 3), O, - hy, (j = 1, 2),. co*, yB, while when 

JI< Ja (3.6) 
it does not make the function I??, even a non-strict minimum. 

It will be shown below that the function UO remains constant only on a SM of the form 
(2.5)-(2.7). Since these SM are isolated from each other when conditions (3.1)-(3.4) are 
satisfied (see (2.9)), according to Theorems 2 and 3 the permanent rotations (2.5) and (2.6) 
are stable, where it is asymptotic with respect to the variables vl,yt(i = 1,2,3) and oj(j = 
1,2) when conditions (3.1) and (3.3) are satisfied, respectively, and unstable when conditions 
(3.2) and (3.4) are satisfied, respectively. Analogously, the regular precessions (2.7) are 
stable, where the stability is asymptotic with respect to the variables u2 (i = 1, 2, 3), o,- 
hy, (j = 1, 2) and mga - J&o, + JIhay,, when condition (3.5) is satisfied and unstable when 
(3.6) is satisfied. 

In other words, if the centre of mass of the sphere is above its geometric centre in the 
permanent rotations, they are stable when J,(p + a)-JJlp>O (hla>O) and the angular velocity 
of the sphere is sufficiently large (oIIp>oza = a,*(1 + a/p)B), and unstable otherwise; if the 
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centre of mass of the sphere is below its geometric centre during the permanent rotations, 
then they are always stable when Jlp -J*(P -a)< O(&a<O), and for J,P -J8(P - a)> 0 when 
the angular veloCity is sufficiently small (ols<O sz - r (1 i- a/P)'),and unstable otherwise; 8 -ha 
regular precessions of the sphere are stable (unstable) irrespective of the magnitudes of the 
precession and intrinsic rotation angular velocities if the axial moment of inertia of the 
sphere is smaller (larger) than 

YJ 
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The set of SM (2.5)-(2.7) is represented geometrically in the half-plane h > 0, y8 (see 
the figure) (for A< 0 the bifurcation diagram is obtained from the mentioned specular 
reflection in the ys axis). The rectilinear and curvilinear branches of the SM curve, 
respectively, correspond to permanent rotations (2.5) and (2.6) and to regular precessions 
(2.7). The distribution of stable SW (marked with the plus symbol) and unstable SM (minus) 
is subject to the laws of change in stability for a fixed value of the parameter h; the 
change in stability occurs only at the bifurcation points. The parts a-d of the figure 
correspond, respectively, to the cases 

a) J8 (1 -alp) > JI, b) JI > Jr > J8 (1 -alp). 
cj JI (1 + a/P) > $I> Ja,d) J, (1 -t a/P) <J,. 
We note that in cases b) and c), as for a "tip-top", toptheeffectoflossesinstability 

(hard and soft, respectivelyj in the rotation of a sphere with the lowest location of the mass 
is observed as the angular velocity increases that accompanies stabilization of the rotation 
of a sphere with the highest positionofthe centre of mass. 

Remark. In the case of viscous sliding friction, the characteristic equation of the 
perturbed equations of motion of a sphere in the neighbourhood of each of the SM (2.5)-(2.7) 
has the form py@)= o. When conditions (3.21, (3.4), (3.6) are satisfied at least one root 
of the equation f(p)=0 lies in the right half-plane and the corresponding motions are unstable. 
When conditions (3.11, (3.3) and (3.5) are satisfied, all the roots of the equation. f@j=O 
lie in the left half-plane and since dll the conditions of the Lyapunov-Malkin theorem are 
satisfied, the corresponding motions are stable, where the stability is asymptotic in parts 
of the variables /15, la/. 

We note that analogous results are obtained in this paper for any law of sliding friction. 

4. We prove that the function uo in (2.1) actually retains constant values only on SM 
of the form (2.5)-(2.7). 

The function uo obviously does not decrease if and only if the sphere rolls on the plane 
without sliding. The relationships 

01 = (PYS + a) 02 - PYZUS, "2 = -(PI% + a) 01 + PI%%* 08 = P (%Va - ozn) (4.1) 

that express the vanishing of the slip velocity of the sphere must be satisfied here, while 
the equations of motion of the sphere can be represented in the form (N is the magnitude of 
the normal reaction of the reference plane) 

'. 
u1 + U+I, - wtuz = (Nm+- g) y,, va' + wl - wh = (4.2) 

(Nm-1 - g) yz, VI' + oluz - wl = (Nm-' - d YS 

Jp,1' + (Ja - J1) ozos = Nays, Jloz' + (J1 - Js) aa: = (4.3) 
-Nay,, J.o.' = 0 

y; + ozys - oay, = 0, 'yz' + 0.e - 01Ya = 0 (4.4) 

y; + qyz' - cozy1 = 0. 

Moreover, the relationships (2.21, (2.3) and 

are satisfied. 

JI(~I* + 6Q) + J.0.Q + 2mgay, = 2h = const (4.5) 

Differentiating the first two relationships (4.1) with respect to time and eliminating 
01' and yi'(i = 1,2,3) using (4.3) and (4.4), we substitute the expressions obtained and the 
relationships (4.1) into the first two equations in (4.2) 
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Nm-'Ay, = J,gyj + BPO~O, (j = 1, 2) (4.6) 

A =JI +ma(ua + a), B = J, (yp + a/p) - Jly, 

Multiplying the first relationship in (4.6) by 8, the second by -yr, and adding term by 
term, we obtain j?po,(~r~~ - ey,)= 0 (if v1 = yz = 0, then the motions satisfying (4.5) are 
only the permanent rotations). 

It hence follows that either os = 0 or 

Wa - 02Yl = 0 (4.7) 
(if B = 0, then ys = a = const and (4.7) again follows from (4.4)). 

We assume first that .a8 =O. Then we obtain the relationships 

Am,' = mgayz, Awi = -mgay, (4.8) 
from (4.6) and (4.3), and differentiating the identity (4.5) with respect to time and taking 
account of (4.8), we obtain the relationship 

Aya' = Jr (may, - waya) (4.9) 
Comparing (4.9) and (4.4), we conclude that ~yl--o,yz = 0, i.e., pure roll of the sphere 

is possible only when condition '(4.7) is satisfied. 
The relationships 

Wl = XVI, 02 = hAt a* = const, y, = const, ua = 0, (4.10) 

VI = WY% 9. = -qz; W = (PY, + a)h - PO8 

must here be satisfied (see (4.1) and (4.3) ), where h-con&, as follows from (2.2). Substitut- 
ing (4.10) into (4.2), we obtain 

(N - mg) yt = mwhy,yt (i = 1, 2) 

(N - mg) y, = -mwk (1 - yI1). 

Multiplying the last relationships by yl, ya, ya, respectively, and adding term by term, 
we obtain N = mg, i.e. 

I(PV* + a) a - PO,1 A (1 - y*') = 0 

from which it follows that pure roll of the sphere is possible only for SM of the form (2.5)- 
(2.7). 

We note that an analogous deduction also follows from theresults in /19/, devoted to a 
description of the limit values of a heavy solid on a plane with viscous sliding friction. 
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STABILITY UNDER CONSTANTLY ACTING PERTURBATIONS, AND AVERAGING IN 
AN UNBOUNDED INTERVAL IN SYSTEMS WITH IMPULSES* 

V.SH. BBRB 

The question of the closeness of non-stationary solutions of the exact 
and averaged equations in an unlimited time interval is investigated for 
ordinary differential equations whose right sides contain generalized 
functions of time (generalized derivatives of functions of bounded 
variation). The appropriate assertions in the development of the method 
proposed in /l/ are derived from a special theorem on stability under 
permanently acting perturbations. The results obtained (more general in 
the case of equations with smooth coefficients then the assertions in 
/2, 3/) afford an apportunity for giving a foundation to the applicability 
of the averaging method to quasiconservative vibration impact systems /4/. 

We note that the question of the correspondence between solutions of 
the exact equations and the stationary solutions of the averaqe equations 
was investigated in /5/ (see /6/ alsoj for 
impulsive action. 

1. we shall use the following notation: R" is 
the element +E I?", I is the interval IO, m),B,(K) 
shall henceforth consider integrals of the form 

_ _ 
systems in standard form with 

a Euclidean n-space, Iz 1 is the norm of 
= {z: I E R", 1 x 1 Q K}, G = I x B, (K). We 

which are understood to be Lebesgue-Stieltjes integrals. We shall say with respect to the 
integrating function u(t) that u(~)E BU(J) if u(t) is a scalar function defined for TV J 
and possessing the following properties: 

1) u (t) is continuous on the right and is of limited variation in each compact sub- 
interval of the interval J; 

2) The discontinuities tr< 12 < . . . (tl > to > 0) of the function u(t) have the single 
limit point + 00. 

Functions defined on J with values in B,(K) continuous to the right and with the same 
points of discontinuity of the first kind as u(t) will be considered as = (Q. Then if 
f 0, 4 is a function defined in G with values in R” bounded in the norm, continuous in x 
uniformly with respect to t and having not more than a denumerable numberof ,points of dis- 
continuity of the first kind in t, the integral (1.1) exists. We note that with the above 
assumptions, the appropriate generalization of the Riemann-Stieltjes integral can be used in 
place of the Lebesgue-Stieltjes integral. Later, if the question of the existence of the 
integral (1.1) is not especially stipulated, we shall assume that the listed conditions are 
satisfied. 

For the function f(t,z) d f e ined in G and integrable with respect to us BU (J), we 
introduce 

Lemmal. Let the function f(t,x) be defined on G and continuous in 2 uniformly with 
respect to TV J.. Let the function 2 (b) which is continuous to the right with values in 

*Prikl.I4atem.I4ekhan.,50,1,50-56,1986 


